A two-stage evolutionary process for designing TSK fuzzy rule-based systems
نویسندگان
چکیده
Nowadays, fuzzy rule-based systems are successfully applied to many different real-world problems. Unfortunately, relatively few well-structured methodologies exist for designing and, in many cases, human experts are not able to express the knowledge needed to solve the problem in the form of fuzzy rules. Takagi-Sugeno-Kang (TSK) fuzzy rule-based systems were enunciated in order to solve this design problem because they are usually identified using numerical data. In this paper we present a two-stage evolutionary process for designing TSK fuzzy rule-based systems from examples combining a generation stage based on a (mu, lambda)-evolution strategy, in which the fuzzy rules with different consequents compete among themselves to form part of a preliminary knowledge base, and a refinement stage in which both the antecedent and consequent parts of the fuzzy rules in this previous knowledge base are adapted by a hybrid evolutionary process composed of a genetic algorithm and an evolution strategy to obtain the final Knowledge base whose rules cooperate in the best possible way. Some aspects make this process different from others proposed until now: the design problem is addressed in two different stages, the use of an angular coding of the consequent parameters that allows us to search across the whole space of possible solutions, and the use of the available knowledge about the system under identification to generate the initial populations of the Evolutionary Algorithms that causes the search process to obtain good solutions more quickly. The performance of the method proposed is shown by solving two different problems: the fuzzy modeling of some three-dimensional surfaces and the computing of the maintenance costs of electrical medium line in Spanish towns. Results obtained are compared with other kind of techniques, evolutionary learning processes to design TSK and Mamdani-type fuzzy rule-based systems in the first case, and classical regression and neural modeling in the second.
منابع مشابه
Local identification of prototypes for genetic learning of accurate TSK fuzzy rule-based systems
This work presents the use of local fuzzy prototypes as a new idea to obtain accurate local semantics-based Takagi–Sugeno–Kang ~TSK! rules. This allow us to start from prototypes considering the interaction between input and output variables and taking into account the fuzzy nature of the TSK rules. To do so, a two-stage evolutionary algorithm based on MOGUL ~a methodology to obtain Genetic Fuz...
متن کاملHybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems
Genetic algorithms and evolution strategies are combined in order to build a multi-stage hybrid evolutionary algorithm for learning constrained approximate Mamdani-type knowledge bases from examples. The genetic algorithm niche concept is used in two of the three stages composing the learning process with the purpose of improving the accuracy of the designed fuzzy rule-based systems. The propos...
متن کاملFRULER: Fuzzy Rule Learning through Evolution for Regression
In regression problems, the use of TSK fuzzy systems is widely extended due to the precision of the obtained models. Moreover, the use of simple linear TSK models is a good choice in many real problems due to the easy understanding of the relationship between the output and input variables. In this paper we present FRULER, a new genetic fuzzy system for automatically learning accurate and simpl...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملLearning Accurate TSK Models Based on Local Fuzzy Prototyping
This work presents the use of local fuzzy prototypes as a first approximation to obtain accurate local semantics-based TakagiSugeno-Kang rules. A two-stage evolutionary algorithm considering the interaction between input and output variables has been developed. Firstly, it performs a local identification of prototypes, and then, a post-processing stage is considered to refine them. The proposal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
دوره 29 6 شماره
صفحات -
تاریخ انتشار 1999